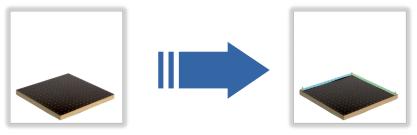


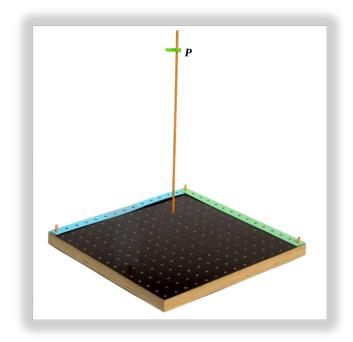
Abstand Punkt/Ebene (1)

Aufbau des 3D-Modells

Auf der Grundplatte ein Koordinatensystem festlegen (blau $\widehat{=} x_1$, grün $\widehat{=} x_2$):



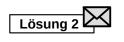
Markieren Sie einen beliebigen Punkt P im Raum, z.B. so:



Forschungsauftrag (1)

1) Bestimmen Sie experimentell einen Punkt Q in der x_1x_2 -Ebene, so dass der Abstand zwischen P und Q so minimal wie möglich ist. Begründen Sie schriftlich ihr Vorgehen.

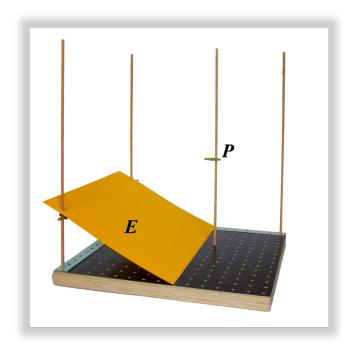
2) Beschreiben Sie die Lage der x_1x_2 -Ebene zur Geraden durch ${\it P}$ und ${\it Q}$.



Umbau des 3D-Modells

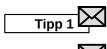
Fügen Sie in Ihr Modell die Ebene E mit $E: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$ mit Hilfe eines Blatt

Papiers ein und verschieben Sie P an die Koordinaten (5 | 9 | 7).



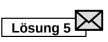
Forschungsauftrag (2)

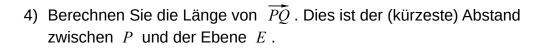
- 1) Ermitteln Sie mit Hilfe der Erkenntnisse aus dem Forschungsauftrag (1) die Koordinaten eines Punktes \mathcal{Q} , so dass der Abstand zwischen \mathcal{P} und \mathcal{Q} minimal ist und \mathcal{Q} in der Ebene \mathcal{E} liegt.
- 2) Bestimmen Sie die Gleichung einer Geraden $\,g\,$, die durch $\,P\,$ und $\,Q\,$ verläuft.

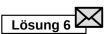


Lösung 4

3) Q ist der Schnittpunkt der Geraden g mit der Ebene E . Bestimmen Sie rechnerisch die Koordinaten von Q .





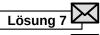


Abstand leicht gemacht, bei Geraden

$$g$$
 ist eine Gerade mit $g: \vec{x} = \begin{pmatrix} 5 \\ -2 \\ 6 \end{pmatrix} + t \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix}$, deren Stützvektor auf den Punkt $P = (5|-2|6)$

zeigt. Für t=6 liefert die Geradengleichung den Ortsvektor zum Punkt Q.

1) Bestimmen Sie die Koordinaten von $\,\mathcal{Q}\,.$



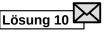
2) Berechnen Sie den Abstand zwischen P und Q.

3) Begründen Sie, den sichtbaren Zusammenhang zwischen t und dem Abstand der Punkte P und Q.

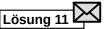
$$h$$
 ist eine Gerade mit $h: \vec{x} = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} + t \begin{pmatrix} 8 \\ 0 \\ 6 \end{pmatrix}$, deren Stützvektor auf den Punkt $A = (2|4|-1)$

zeigt. Für t=0.5 liefert die Geradengleichung den Ortsvektor zum Punkt B.

4) Bestimmen Sie die Koordinaten von B.



5) Berechnen Sie den Abstand zwischen A und B.



- 6) Warum besteht der Zusammenhang zwischen *t* und dem Abstand der Punkte in diesem Fall nicht? Begründen Sie.
- 7) Geben Sie eine Gleichung für h an, bei der sich der Abstand zwischen A und eines weiteren Punktes direkt von t ablesen lässt (so wie bei der Geraden g).

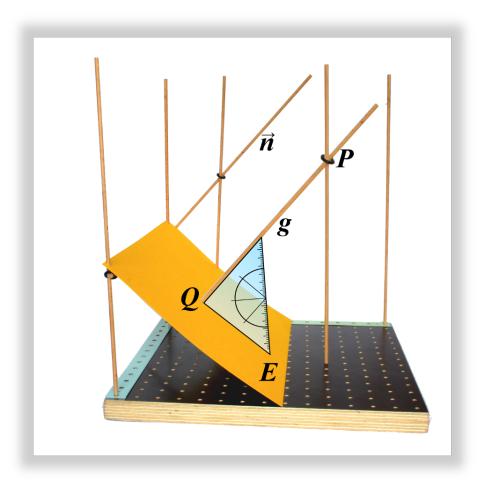
Umbau des 3D-Modells

Fügen Sie in Ihr Modell die Ebene $E: \left[\vec{x} - \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix}\right] \circ \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} = 0$ mit Hilfe eines Blatt Papiers ein

und verschieben Sie P an die Koordinaten (8 | 10 | 11).

Fügen Sie eine Gerade $\,g\,$ in das Modell ein, so dass $\,g\,$ durch $\,P\,$ geht und senkrecht auf $\,E\,$ steht.

Markieren Sie den Schnittpunkt von g und E mit Q.



Optimierung des Lösungswegs

- 1) Eine Gleichung zu g ist $g: \vec{x} = \begin{pmatrix} 8 \\ 10 \\ 11 \end{pmatrix} + t \cdot \vec{n}$. Bestimmen Sie \vec{n} , so dass \vec{n} ein Einheitsvektor¹ ist.
- 2) Begründen Sie, dass E_n mit E_n : $\left[\vec{x} \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix}\right] \circ \vec{n} = 0$ und E die selben Ebenen Lösung 15

beschreiben. **Definition:** Ist der Normalenvektor in einer Ebenengleichung in Normalform ein

- Einheitsvektor, so heißt die Ebenengleichung **Hess´sche Normalform**.

 3) Messen Sie im 3D-Modell den Abstand zwischen *P* und *Q* . Lösung 16
- 4) Bestimmen Sie aus dem gemessenen Abstand und ohne Rechnung einen Wert für t, so dass $\vec{q} = \begin{pmatrix} 8 \\ 10 \\ 11 \end{pmatrix} + t \cdot \vec{n}$.
- 5) Um die Koordinaten von Q zu berechnen, wird der Term $\begin{pmatrix} 8\\10\\11 \end{pmatrix} + t \cdot \vec{n}$ in die $\left[\begin{pmatrix} 8\\10\\11 \end{pmatrix} + \frac{1}{2} \right]$

Ebenengleichung eingesetzt und nach t aufgelöst: $\begin{bmatrix} 8 \\ 10 \\ 11 \end{bmatrix} + t \cdot \vec{n} - \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix}$ $\circ \vec{n} = 0$

Beschreiben Sie in Worten, welche Umformungen mit jedem Schritt gemacht werden:

Term
$$\begin{bmatrix}
8 \\ 10 \\ 11
\end{bmatrix} + t \cdot \vec{n} - \begin{pmatrix} 0 \\ 0 \\ 6
\end{bmatrix} \circ \vec{n} = 0$$

$$\Leftrightarrow \begin{bmatrix}
8 \\ 10 \\ 11
\end{bmatrix} - \begin{pmatrix} 0 \\ 0 \\ 6
\end{bmatrix} + t \cdot \vec{n} \end{bmatrix} \circ \vec{n} = 0$$

$$\Leftrightarrow \begin{bmatrix}
8 \\ 10 \\ 11
\end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 6
\end{bmatrix} \end{bmatrix} \circ \vec{n} + t \cdot \vec{n}^2 = 0$$

1 Einheitsvektoren sind Vektoren mit der Länge 1.

7) Der Abstand von P zu E lässt sich somit mit $d=|t|=|(\vec{p}-\vec{s})\cdot\vec{n}|$ berechnen. Woher kommen die Vektoren \vec{p} , \vec{s} und \vec{n} ?