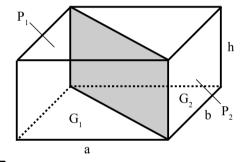
Volumenberechnung (Senkrechte Prismen)

Senkrechte Prismen

Definition: Ein Körper, dessen Grundfläche ein Vieleck ist und dessen Seitenflächen Rechtecke sind, die senkrecht auf der Grundfläche stehen, heißt senkrechtes Prisma.

Rechtwinklige Dreiecke als Grundfläche


Betrachten wir folgenden Körper:

Das Volumen des Quaders Q mit den Kantenlängen a, b und h ist

$$V_Q = a \cdot b \cdot h$$

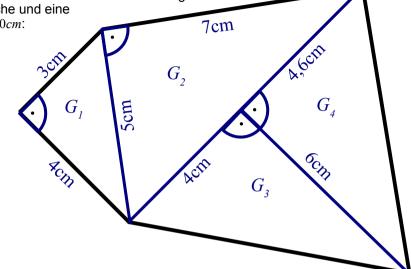
Es gilt:

Das Volumen von Q ist gleich dem Volumen von P_1 und P_2 zusammen.

$$V_Q = V_{P_1} + V_{P_2}$$

 P_1 und P_2 sind gleich groß.

Damit ist das Volumen von P₁, bzw. von P₂:


$$V_{P_1} = \frac{1}{2} \cdot a \cdot b \cdot h = G_1 \cdot h$$

$$V_{P_2} = \frac{1}{2} \cdot a \cdot b \cdot h = G_2 \cdot h$$

Volumen von senkrechten Prismen

Betrachte das senkrechte Prisma mit folgender Grundfläche und eine Höhe h=10cm

Körper	а	b	Höhe	Volumen
$Prisma\ P_1\ mit\ G_1$	3cm	4cm	10cm	60cm³
Prisma P_2 mit G_2	5cm	7cm	10cm	175cm³
Prisma P_3 mit G_3	4cm	6ст	10cm	120cm³
Prisma P_4 mit G_4	4,6cm	6ст	10cm	138cm³
Volumen des senkrechten Prisma				493cm³

Das Volumen des senkrechten Prisma ist:

$$V = V_{P_1} + V_{P_2} + V_{P_3} + V_{P_4}$$

$$V = G_1 \cdot h + G_2 \cdot h + G_3 \cdot h + G_4 \cdot h = h \cdot (G_1 + G_2 + G_3 + G_4)$$

Das Volumen eines senkrechten Prisma ist:

 $V = Grundfläche \cdot H\"{o}he$