



Die Funktion muss **streng** monoton steigen/fallen.

Nein, der Graph gehört zu keiner Funktion, da der Funktionswert für 0≤x nicht eindeutig ist.

Beschreibung	Rechenschritt
Ersetzten Sie in der Funktionsgleichung $f(x)$ durch y	$y = x^3 + 1$
Vertauschen Sie die Variablen x und y	$x = y^3 + 1$
Lösen Sie die Gleichung nach y auf	$\sqrt[3]{x-1} = y$
Ersetzten Sie in der Gleichung y durch $\bar{f}(x)$	$\overline{f}(x) = \sqrt[3]{x-1}$

x	-63	-7	1	9	65
$\bar{f}(x)$	-4	-2	0	2	4

Die Gleichung kann keine Funktionsgleichung sein, da einem x-Wert zwei verschiedene y-Werte zugeordnet werden.

Beschreibung	Rechenschritt
Ersetzten Sie in der Funktionsgleichung $p(x)$ durch y	$y=x^2$
Vertausche Sie die Variablen x und y	$x=y^2$
Löse Sie die Gleichung nach y auf	$\pm\sqrt{x}=y$

Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz. 2013 Henrik Horstmann

Beschreibung	Rechenschritt
Ersetzten Sie in der Funktionsgleichung $f(x)$ durch y und vertauschen Sie die Variablen x und y	$x = \sqrt{y}$
Löse Sie die Gleichung nach y auf	$y=x^2$
Ersetzten Sie in der Gleichung y durch $\overline{f}(x)$	$\bar{f}(x)=x^2$

Geben Sie den Definitionsbereich von $\bar{f}(x)$ an: $x \in IR$

