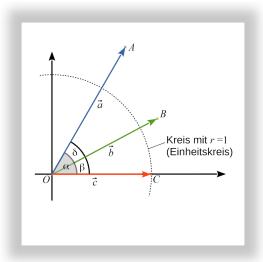


Winkel zwischen Vektoren (3)

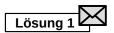
Forschungsauftrag



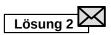
1) Wählen Sie zwei beliebige Punkte A und B. Beide Punkte liegen im ersten Quadranten.

Dann sind $\vec{a} = \overrightarrow{OA} \wedge \vec{b} = \overrightarrow{OB}$.

2) Berechnen Sie den Winkel $\,\alpha$, der von den Vektoren $\,\vec{a}\,$ und $\,\vec{c} = \!\! \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ eingeschlossen wird.



3) Berechnen Sie den Winkel β , der von den Vektoren \vec{b} und $\vec{c} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ eingeschlossen wird.

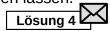


4) Berechnen Sie den Winkel δ zwischen den Vektoren \vec{a} und \vec{b} .

Gibt es einen einfacheren Weg über das Skalarprodukt $\vec{a} \circ \vec{b}$?

5)
$$\vec{a} = a \cdot \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix} \land \vec{b} = b \cdot \begin{pmatrix} \cos(\beta) \\ \sin(\beta) \end{pmatrix}$$

Geben Sie Terme an, mit denen sich die Werte für a und b berechnen lassen.



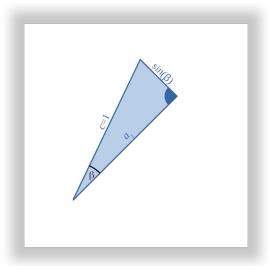
6)
$$\vec{a} \circ \vec{b} = \left[a \cdot \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix} \right] \circ \left[b \cdot \begin{pmatrix} \cos(\beta) \\ \sin(\beta) \end{pmatrix} \right]$$

Setzen Sie für a und b die Terme aus Auftrag 5 ein und führen Sie die Skalarmultiplikation der beiden Vektoren aus.

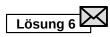
Ist das ganze eine Sackgasse oder ist es möglich den Term so umzubauen, dass er nicht mehr von α und β abhängig ist, sondern ausschließlich von dem Winkel δ ?

Das Additionstheorem $\cos(\alpha)\cdot\cos(\beta)-\sin(\alpha)\cdot\sin(\beta)=?$ wird weiter helfen, auch wenn in dem Term ein – statt einem + steht!

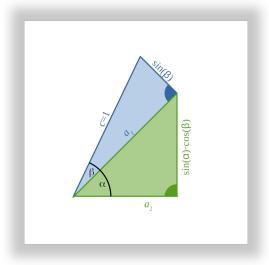
7)



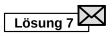
Bestimmen Sie a_1 .



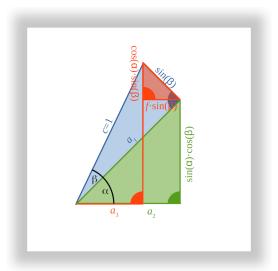
8)



Bestimmen Sie $\,a_2^{}\,.$



9)



Bestimmen Sie f und a_3 .

10) Berechnen Sie $\cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta) = ?$

Lösung 9

- 11) Der Kosinus ist symmetrisch zur y-Achse: $\cos(-\delta) = \cos(\delta)$ Der Sinus ist Punktsymmetrisch zum Ursprung: $\sin(-\delta) = -\sin(\delta)$ Zeigen Sie mit Hilfe der Symmetrieeigenschaften von Kosinus und Sinus, dass Sie in der Gleichung aus Auftrag 10 alle Plus und Minus vertauschen können.
- 12) Stellen Sie mit der Gleichung aus Auftrag 6 und dem Additionstheorem (Auftrag 11) einen Zusammenhang zwischen dem Skalarprodukt $\vec{a} \circ \vec{b}$ und dem Winkel δ her, der von \vec{a} und \vec{b} eingeschlossen wird.
- 13)Berechnen Sie den Winkel δ mit Hilfe des Skalarprodukts $\vec{a} \circ \vec{b}$ und überprüfen Sie Ihr Ergebnis mit dem Ergebnis aus Auftrag 4.