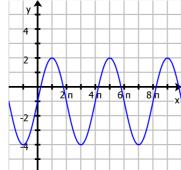

Aufgaben zu trigonometrischen Funktionen

- a) p und h sind Funktionen mit $p(x) = \sin(x)$ und $h(x) = -\sin(2(x-x_0)) + 2$. Bestimmen Sie x_0 so, dass sich die Graphen von p und h berühren.
- b) Bestimmen Sie den kleinsten exakten Wert für δ , so dass $12 < \delta$ ist und folgende Gleichung gilt: $-\sin(4) = \sin(3+\delta)$
- c) K_f ist der Graph von $f(x) = \frac{1}{2} \left(\sin \left(\frac{1}{2} x \right) 1 \right)$, $x \in [-\pi; 5\pi]$.

Bestimmen Sie die Perioden von K_f . Bestimmen Sie die Schnittpunkte von K_f mit den Koordinatenachsen.


- d) Bestimmen Sie in den folgenden Gleichungen den exakten Wert für x: $\sin\left(\frac{1}{6}\pi\right) = \cos(x\pi); \quad 0 \le x \le 1$
- e) Sei K_f das Schaubild der Funktion f mit $f(x) = \sin\left(\frac{1}{2}x\right) + b$.

Welche der zwei obigen Schaubilder gehören nicht zu K_f . Begründen Sie Ihre Aussage.

Bestimmen Sie die Funktionsgleichung zu dem Graphen aus Schaubild A.

- f) f ist eine Funktion mit $f(x) = 0.5\cos(x) + 1$, $x \in \mathbb{R}$. Zeigen Sie, dass die Gleichung f(x) = 1.5 zwei Lösungen für $0 \le x \le 2\pi$ besitzt. Sei K_f der Graph von f. Begründen Sie, warum K_f keine Schnittpunkte mit der x-Achse besitzt.
- g) Das folgende Schaubild zeigt den Graphen von $f(x) = a \sin(\frac{1}{2}x) + b$

Bestimmen Sie a und b. Geben Sie die exakte Periodenlänge an.