

Vorbereitung

Im 3D-Modell werden drei Punkte P, Q und S so platziert, dass sie auf einer Geraden liegen.

Beispiel:

<u>Hinweis:</u> An dieser Stelle kann es sinnvoll sein, eine Hilfestellung zu geben, wie die drei Punkte gewählt werden müssen.

Entdecken der skalaren Multiplikation

Die Aufgabe besteht nun darin, einen Zusammen zwischen den Vektoren $\vec{v} = \overrightarrow{PQ}$ und $\vec{r} = \overrightarrow{PS}$. Überprüft werden die Erkenntnisse an einem weiteren Beispiel im 3D-Modell.

Festigen

Im 3D-Modell wird eine weitere Situation aufgebaut, die den Anforderungen entsprechend dem Abschnitt Vorbereitung genügt.

Aufgaben:

- ♦ Aus dem 3D-Modell werden die Vektoren \vec{v} und \vec{r} ermittelt und im Anschluss der Faktor s mit $\vec{r} = s \cdot \vec{v}$ berechnet. Durch eine Probe kann das Resultat überprüft werden (eigenständige Lösungskontrolle).
- ullet es liegt ein Faktor vor, und es soll \vec{r} aus \vec{v} ermittelt werden. Die Ergebnisse können am 3D-Modell überprüft werden (eigenständige Lösungskontrolle).

Anwenden

Zusammen mit der Vektoraddition können folgende Probleme gelöst werden:

- Mittelpunkt einer Strecke ermitteln.
- Weitere Punkte auf einer Strecke ermittelt werden. Dies kann auch als Vorbereitung auf des Thema Geraden betrachtet werden.