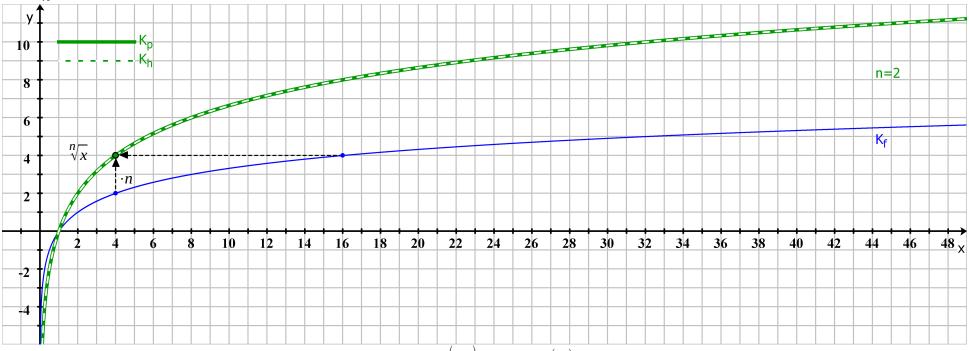

Exponentialfunktionen: Logarithmusgesetze

Addition versus Multiplikation

 K_f ist der Graph von $f(x) = \log_2(x)$, $x \in \mathbb{R}$. p und h sind zwei weitere Funktionen, mit $p(x) = f(n \cdot x)$ und $h(x) = f(x) + \log_2(n)$, 0 < n. Wählen Sie ein n und zeichnen Sie ohne Hilfe eines Taschenrechners die Graphen K_p und K_h von K_h von K_h und K_h in das Schaubild.

Stellen Sie eine Vermutung auf, in welcher Beziehung $\log_2(n)$, $\log_2(n \cdot x)$ und $\log_2(x)$ zueinander stehen:


Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz.

2020 Henrik Horstmann

Exponentialfunktionen: Logarithmusgesetze

Multiplikation versus Potenzieren

 K_f ist der Graph von $f(x) = \log_2(x)$, $x \in \mathbb{R}$. p und h sind zwei weitere Funktionen, mit $p(x) = f(x^n)$ und $h(x) = n \cdot f(x)$, 0 < n. Wählen Sie ein n und zeichnen Sie ohne Hilfe eines Taschenrechners die Graphen K_p und K_h von p und K_h in das Schaubild.

Stellen Sie eine Vermutung auf, in welcher Beziehung n, $\log_2(x^n)$ und $\log_2(x)$ zueinander stehen:

