 Das Schaubild der Funktion $f(x)=a \mathrm{e}^{k x}+b$ verläuft durch die Punkte $P_{1}\left(x_{1} \mid y_{1}\right)$ und $P_{2}\left(x_{2} \mid y_{2}\right)$. Zeigen Sie, dass $a=\frac{y_{1}-y_{2}}{\mathrm{e}^{k x_{1}}-\mathrm{e}^{k x_{2}}}$ und $P_{1}\left(x_{1} \mid y_{1}\right)$ und $P_{2}\left(x_{2} \mid y_{2}\right)$. Zeigen Sie, dass $a=\frac{y_{1}-y_{2}}{\mathrm{e}^{k x_{1}}-\mathrm{e}^{k x_{2}}}$
$b=\frac{y_{2} \mathrm{e}^{k x_{1}}-y_{1} \mathrm{e}^{k x_{2}}}{}$ ist. Schaubilder
(A)
(A)
(B) a) Zu dem Schaubild (A) gehört der Funktionsterm $f(x)=a \mathrm{e}^{x}+b$ Bestimmen Sie a und b.
b) Begründen Sie, warum (B) nicht das Schaubild von $f(x)=5 \mathrm{e}^{x}-3$ ist. Skizzieren Sie $f(x)$ in (C).
Exponentialfunktionen bestimmen
Exponentialfunktionen aus gegebenen Punkten
 Gesucht sind die jeweiligen Exponentialfunktion
Schaubilder durch die angegebenen Punkte verlaufen.
 b) $\begin{array}{ll}P_{1}(0 \mid-1), \quad P_{2}(1 \mid 0) & f(x)=a \mathrm{e}^{3^{3}}+b \\ & P_{1}(0 \mid 3), P_{2}(-3 \mid 0) \\ f(x)=a \mathrm{e}^{\frac{1}{4} x}+b & \text { d) } \\ P_{1}(0 \mid-4), P_{2}(4 \mid 0) & f(x)=a \mathrm{e}^{-2 x}+b \\ & P_{1}(-3 \mid 3), \quad P_{2}\left(-4 \left\lvert\,-\frac{1}{2}\right.\right)\end{array}$ Beweis Das Schaubild der Funktion $f(x)=a \mathrm{e}^{k x}+b$ verläuft durch die Punkte $P_{1}\left(x_{1} \mid y_{1}\right)$ und $P_{2}\left(x_{2} \mid y_{2}\right)$. Zeigen Sie, dass $a=\frac{y_{1}-y_{2}}{\mathrm{e}^{k x_{1}}-\mathrm{e}^{k x_{2}}}$ und $b=\frac{y_{2} \mathrm{e}^{k x_{1}}-y_{1} \mathrm{e}^{k x_{2}}}{\mathrm{e}^{k x_{1}}-\mathrm{e}^{k x_{2}}}$ ist.
Schaubilder

a) Zu dem Schaubild (A) gehört der Funktionsterm $f(x)=a \mathrm{e}^{x}+b$ Bestimmen Sie a und b.
b) Begründen Sie, warum (B) nicht das Schaubild von $f(x)=5 \mathrm{e}^{x}-3$ ist. Skizzieren Sie $f(x)$ in (C).

