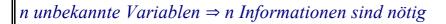
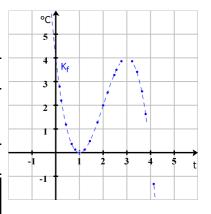
Funktionen zu Kurven mit gegebenen Eigenschaften

Was ist gegeben, was ist gesucht?


Gegeben ist die nebenstehende Kurve einer ganz rationalen Funktion 3. Grades


$$f(x) = a x^3 + b x^2 + c x + d$$

mit

$$TP(1|0) \Rightarrow f(1) = 0 \land f'(1) = 0$$

$$WP(2|2) \Rightarrow f(2) = 2 \land f''(2) = 0$$

LGS aufstellen und lösen

Ableitungen: $f'(x) = 3 a x^2 + 2 b x + c$; f''(x) = 6 a x + 2 b

$$TP(1|0) \Rightarrow f(1) = a + b + c + d = 0$$

$$f'(1) = 3a + 2b + c = 0$$

$$WP(2|2) \Rightarrow f(2) = 8a + 4b + 2c + d = 2$$

$$f''(2) = 12 a + 2 b = 0$$

					-	
	f(x)	d	c	b	а	q
a + 6 - 9 + 4 = 0	0	1	1	1	1	
$\Rightarrow a = -1$	$\begin{bmatrix} -0 \end{bmatrix}$	$\begin{bmatrix} - & - & - \\ 0 & \end{bmatrix}$	$\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	$\frac{1}{1} - \frac{1}{2} - \frac{1}{2}$	3	-3
	2		$\frac{2}{2}$	4	8	-8
	$\begin{bmatrix} -0 \end{bmatrix}$	$\begin{bmatrix} & - & - & - & - \\ & & 0 & \end{bmatrix}$	- 0	$\frac{1}{1} - \frac{1}{2} - \frac{1}{2}$	12	
-b + 18 - 12 = 0	0	-3	-2	<u> </u>	0	
$\Rightarrow b = c$	2		6 -6	-4	0	
	$\begin{bmatrix} -0 \end{bmatrix}$			-10	0	-10^{-10}
2c+20=2	2	5	2	0		
$\Rightarrow c = -9$	$\begin{bmatrix} & -0 & - \\ & & \end{bmatrix}$	18	8	-0		
$-2 d = -8 \Rightarrow d = 4$	-8	-2	0			

Die gesuchte Funktionsgleichung

$$f(x) = -x^3 + 6x^2 - 9x + 4$$

