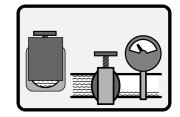
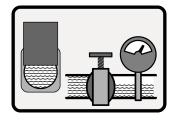
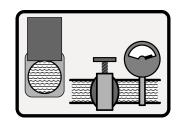

Fallbeschreibung


Durch das Fallrohr fließendes Wasser wird in I/sec gemessen. Die Messung beginnt mit dem Öffnen des Absperrventils. Nachfolgendes Schaubild zeigt die





Absperrventil geschlossen

Absperrventil ganz geöffnet

Funktionsgleichung

Bestimmen Sie anhand des Schaubilds die Funktionsgleichung zu K_f

$$f(t) =$$

Vergleichen Sie Ihr Ergebnis mit der Lösungskarte 1

Vergleichen Sie Ihr Ergebnis mit der Lösungskarte 2

unter einer Creative Commons Namensnennung 4.0 International Lizenz, 2014 Henrik Horstmann

Wassermenge

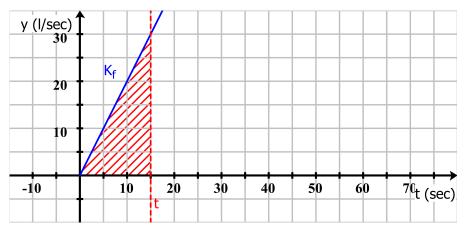
Bestimmen Sie eine Funktionsgleichung mit der die Wassermenge, die durch dass Fallrohr fließt, in Abhängigkeit von der Zeit berechnet werden kann:

An der Tafel hängt eine Karte mit einem Tipp.

$$F(t) =$$

Lösungskarte 1

$$f(t)=2t$$


Plakat 05: Pumpspeicherwerk

Lösungskarte 2

$$F(t)=t^2$$

Tipp: Wassermenge

Die Wassermenge zum Zeitpunkt t ist gleich der Größe der schraffierten Fläche:

Plakat 05: Pumpspeicherwerk

Dieses Werk ist lizenziert unter einer
Creative Commons Namensnennung 4.0 International Lizenz.
2014 Henrik Horstmann

Tipp: Wassermenge

Lösungskarte 1

Plakat 05: Pumpspeicherwerk

Plakat 05: Pumpspeicherwerk

Lösungskarte 2